
ResFuse and ReFiNet: Enhanced CNN Architectures for Image Classification

Nihit Desai ∗

Stanford University
nihit@stanford.edu

Frederic Ren ∗

Stanford University
fren@stanford.edu

Allen Nie ∗

Stanford University
anie@stanford.edu

Abstract

Convolutional Neural Networks are the key components for
many state-of-the-art models in various computer vision
tasks Recent work in this area suggests that network depth is
an important factor in achieving good results. In this paper
we propose two improvements to deep CNN architectures
and evaluate performance on image classification: ResFuse
(a modified Deep Residual Network with a projected con-
volution connecting input and output between two residual
blocks) and RefiNet (a CNN-based hierarchical classifica-
tion framework). In experiments, we show that ResFuse
performs 1-3% better than reference network, and ReifiNet
performs 2-3% better than the baseline.

1. Introduction

Visual recognition is a well studied problem in Computer
Vision. Feature descriptors such as HOG [3] and SIFT [20]
have been widely used to extract features from images.
However, most hand-engineered features suffer from the
following drawbacks - they are too sensitive to input, don’t
generalize well and are limited in their representational
power. Deep Convolutional Neural Network (CNN)
architectures[17] have recently become popular as they
eliminate the dependence on hand-designed explicit fea-
tures and instead directly learn good feature representations
from raw data. These deep neural networks integrate
features at various levels of specificity (ranging from
low-level features like edges to high-level abstract features
such as objects)[30] and classifiers in a comprehensive
end-to-end fashion. Indeed, Deep CNN architectures have
achieved state-of-the-art results on image classification
tasks[16], [12].

Recent work in this area suggests that network depth
is very important to get good results since deeper networks
can learn more abstract features[22]. Deep Residual
Networks[11] (which advanced the state of the art perfor-

∗equal contribution

mance on image classification and achieved a top-5 error
rate of 3.57% in ILSVRC 2015) allow much deeper net-
works to be trained efficiently and without running into the
problem of vanishing/exploding gradients which plagues
vanilla CNNs as depth of the network increases. Another
interesting line of work on improving CNN architectures
has been to perform image classification in a hierarchical
fashion using CNNs. As the number of object categories in
a dataset becomes larger, “separability” between different
object categories is highly uneven. Some pairs of categories
are much harder to distinguish than others, e.g. in ImageNet
dataset, the categories ‘iPod’ and ‘German shephard’ are
easier to distinguish that ‘sulpher butterfly’ and ‘monarch
butterfly’. Hierarchical classification has been effective for
linear classifiers [6] [31], and some recent work has tried to
formulate such an approach to CNNs [28] [4].

In this project we explore two possible improvements
to CNN architectures. We propose ResFuse network, which
explores the efficacy of adding redundant connections
between residual blocks [11]. We also propose ReifiNet,
which extends the Deep Convolutional Neural Network
architecture to perform image classification in a hierar-
chical fashion. To evaluate our improvements, we use the
two datasets (both of which are subsets of the ImageNet
dataset): ImageNet-100 (50K images across 100 classes)
and ImageNet-200 (100K images across 200 classes). In
the context of this class, these datasets have also been
referred to as Tiny-ImageNet-A and Tiny-ImageNet. We
compare the performance of our architectures on image
classification task against relevant baselines. A more de-
tailed explanation of our improvements follows in Section
4 and 5.

2. Related Work

Convolutional Neural Networks: CNN-based models
produce state-of-the-art performance in various computer
vision tasks, including image classification [16][11], object
detection [7][10], and semantic segmentation [2]. There has
been considerable work in enhancing CNN components,
including pooling layers [29], activation units [8], and

1

nonlinear layers[18]. There has also been considerable
work in improving CNN training, such as by using Batch
Normalization[14] and Dropout[23].

Shortcut Connection Networks: Different enhanced
CNN architectures that focus on shortcut connections
have been proposed over the recent years, two of which
are Highway Network, Inception and Residual Network.
Highway Network is developed by Srivastava [25]. It took
inspiration from Long-short-term Memory Network, using
two convolutions as gating units. It claims the highway
connections help training very deep networks, and helping
with the vanishing gradient problems [26]. In [27], an
“Inception” block was proposed and the core concept of an
inception block is to allow input to pass through different
branches and combine computations in the end. Another
CNN architecture has been gaining a lot of attention
is Residual Network. Residual Network, similar to its
predecessor Highway Network, and Inception, is a network
that focuses on shortcut connections. It has demonstrated
to have exceptional performance in deep networks.

Hierarchical CNNs: In visual recognition, there is a
vast literature exploiting category hierarchical structures.
Hierarchical classification has been shown to be effective
for linear classifiers [6] [31] in this problem domain. There
are two ways that existing approaches construct the label
hierarchy - either predefined manually (e.g. [5] uses the
predefined ImageNet hierarchy) or learned automatically
from data[19]. An early attempt to introduce a category
hierarchy in CNN models is reported in [4], where label
relations are encoded in a hierarchy and improved accuracy
is achieved when a subset of training images are relabeled
with internal nodes in the hierarchical class tree. More
recently Yan et. al.’s work[28] proposes a hierarchical ap-
proach to image classification using CNNs. They construct
a two-level category hierarchy from ImageNet-1000 dataset
and report an improvement in classification accuracy
compared to a single layer flat CNN of comparable size.
Our work in this regard closely follows Yan et. al.’s work.

3. Dataset
To evaluate the performance of our new architectures
on image classification tasks, we consider two datasets:
ImageNet-100 (50K images across 100 classes) and
ImageNet-200 (100K images across 200 classes). In the
context of this class, these datasets have also been re-
ferred to as Tiny-ImageNet-A and Tiny-ImageNet. We use
ImageNet-100 to evaluate both the architectures, and addi-
tionally use ImageNet-200 to evaluate RefiNets. It should
be noted that the focus of our project is to evaluate the
proposed architectures against corresponding baselines on
these datasets, not participating in the ImageNet chal-

lenge. Each image in this dataset has a spatial dimension
of 64x64x3. Our RefiNet architecture resizes and prepro-
cesses these images (finally converted to spatial dimension
224x224x3). A brief summary of the datasets is given in

ImageNet-200 ImageNet-100
Training 100000 50000
Test 5000 2500
Validation 5000 2500
Classes 200 100

Table 1: Dataset Size

Table 1, and images from some example classes are given
in Figure 1. It should be noted that the given datasets have
class labels only for the training and validation data, not
for the test data. Hence, we divide the validation set into
two parts: one used as the actual validation set (to measure
performance during hyperparameter tuning and model se-
lection) and another used as the test set (which we don’t
touch until the very end to report final performance num-
bers). This is why the size of validation and test sets in
Table 1 is lesser than the size of the respective sets in the
released dataset.

Figure 1: Sample images from ImageNet-100

4. ResFuse
4.1. Architectures

4.1.1 Residual Network

Residual network introduced by [11] employs residual
blocks that allow additive interaction between input and
output of two convolution layers. The dimension of the
input and dimension of the output within the residual unit
need not be the same. The gradient is distributed according
to the additive operation, and so it partly solves the vanish-
ing gradient problem. The residual unit is described as in
equation 1.

y = F(x, {Wi}) + x (1)
Residual block also has variations when it comes to dimen-
sion increase, with regard to an increased number of filters.
Residual network alternates on two variations of residual
units: zero-padding or weighted projection. In our experi-
mental setting, we used vanilla padded projection.

2

(a) ResNet Architecture (b) ResFuse Architecture

Figure 2

4.1.2 Highway Network

Highway network is inspired by long-short-term memory
gating units of the recurrent neural network. The input
passes through two gates, one is the transformation gate,
and another is the carry gate, and it also passes through a
normal convolution layer. In the end, the multiplicative op-
eration combines the result from the vanilla convolution,
transformation gate, and the carry gate. Transformation
gate defines how much “transformation” through the vanilla
convolution it allows to pass through, and carry gate decides
how much of the original input the network decides to carry.
All of which are expressed in Equation 2.

y = H(x,WH) · T (x,WT) + x · C(x,WC) (2)
However, in order to simplify computation and reduce the
number of needed parameters, the paper chooses to follow
the convention that reduces the carry gate to an operation of
1− T (x,WT), so the final equation is Equation 3.

y = H(x,WH) · T (x,WT) + x · (1− T (x,WT)) (3)

Then we can make the argument if the network decides not
to take any of the original input, transformation gate would
learn to be an identity projection, thus blocking any origi-
nal input, or if it believes the convolution is not helpful, it
can skip the transformation and directly send input to the
next layer. This intuition is captured in Equation 4. Resid-
ual network can be considered as a special version of the
highway network, with both transformation and carry gate
as the identity projection.

y =

{
x, if T (x,WT) = 0,

H(x,WH) if T (x,WT) = 1.
(4)

Figure 3: Highway Network Architecture

4.1.3 ResFuse Network

We propose a new architecture: ResFuse network. It takes
inspiration from probabilistic graphical modeling that any
probabilistic network is under conditional independence as-
sumption, and probabilistic models simplify the connec-
tions based on conditional independence assumption.
Even though it is a conditional independence assumption
under the generative model, and neural networks are in
general considered a discriminative model, similar phe-
nomenons can observed in dropout network [24], and model
ensemble methods [9].
We propose a neural network with redundant projections
that are built on top of residual network’s simple additive
connections. We connect input and convoluted output on
the scope of two residual blocks (4 convolution layers), and
introduce such redundant connections throughout the entire
network.

y = F(F(x) + x) + C(x) (5)

We define a carry gate: C, a convolution transformation that
is composed of 1x1 filter size, with stride of 1. We allow the
weights of C to be learned and if such redundant connection
is not needed, it can equate to the zero-matrix. Similar to
highway network, we do not formulate a version where in-
put and output can be of different size, and such dimension
increase is handled by a regular residual block between the
resfuse blocks.

4.2. Experiments & Results

We evaluate our method on the ImageNet-100. We evaluate
variations of residual network, highway network, and res-
fuse network with different number of layers and obtain a
final test result on a test set. We evaluate both top-1 and top-
5 error rates during training, and top-1 error rate on testing.
Due to the time constraint, we adopted part of our hyperpa-
rameters from [11], and conducted a limited hyperparame-
ter search mostly on the number of training epochs, number

3

of layers, and learning rate drop. It turns out these three
factors governed the performance of our models.
We constructed a classical ResNet-34 layer model as our
reference model, then we built all three networks with 19
layers, and we built ResNet and ResFuse net to 25 lay-
ers. All models with the same depth (except for the clas-
sical model) share the same number of convolutions, and
the same filter size, stride, and padding strategy.
We chose nesterov accelerated gradient (NAG) [21] as our
optimizing strategy, as stated in [11], other optimization
methods such as Adam, perform poorly in the context of
ResNet. This seems to be a common trait of the shortcut
connected networks, which is also mentioned in highway
network. All the weights are initialized using He normal-
ization [13]. We initialize the weight and bias of highway
gating units the same as described in the paper [25].
Then we ran the experiments on GPU, and we configured
the batch size to be the maximum number of images that
can be stored in the GPU memory. The training loss is plot-
ted in Figure 4 for all models. We drop our learning rate
by 0.1 when we encounter a training plateau, and decision
is made based on observation. All models during training
phase converge to the same loss, but highway network per-
formed the best in validation.

Figure 4: Training loss aof architectures

We also provide a comparison of model’s top-1 and top-5
result in Table 2. All experiments are run at 90 epochs, and
the testing result is obtained on the entire validation set.

4.3. Discussion

We can notice from Table 2 that clearly 34-layer ResNet
model is too deep for the size of the ImageNet-100 dataset,
and it is underperforming in validation set compared to
other models. Judged from comparison, ResFuse consis-
tently bests the performance of ResNet by a small margin
with the same depth and training configuration. However,

Model Val top-1 Val top-5 Test top-1
ResNet* 57.70 79.86 57.55
ResNet-19 60.20 82.84 60.18
Highway-19 62.50 84.30 62.48
ResFuse-19 60.48 83.24 60.36
ResNet-25 60.06 82.42 60.06
ResFuse-25 60.32 82.74 60.16

Table 2: Models training accuracy (in %) on ImageNet-100.
*: reference resnet is a 34-layer classical model

evidence does support that Highway network performs bet-
ter than both ResFuse and ResNet.
We have also compared the training time and size increase
between the three architectures, which is shown in Table 3.
ResFuse is taking a time penalty due to the added redundant
connection with a slight parameter increase. The amount
of parameter increase is subject to the number of filters of
the previous layer, since ResFuse projection is only doing a
simply identity projection.
ResFuse also shares the problem of highway network: both
networks cannot handle dimension increase between the in-
put and the final projected output. Highway network uses
normal convolution layers between highway blocks to in-
crease the number of filters, and ResFuse Network uses a
residual block to increase the filter size.

Parameter Size Time/Epoch
ResNet-19 423,5172 6.470m
Highway-19 423,5172 6.617m
ResFuse-19 432,2084 6.803m

Table 3: Models training accuracy (in %) on ImageNet-100.
*: reference resnet is a 34-layer classical model

5. RefiNets
5.1. Architecture

In this section, we discuss the details of various parts of
the RefiNet architecture. An overview of this architecture
is given in Figure 5. Overall goal of RefiNet is to perform
image classification in a hierarchical manner. In the rest of
the section, we will use the following notations. A dataset
consists of images {xi, yi}, where xi and yi denote the
image data and label, respectively. Size of the dataset is
N , there are C class labels which we intend to cluster into
K clusters.As a preprocessing step, we subtract channel
mean, resize input images with spatial dimensions 64x64
to 256x256 and maintain a central crop of 224x224. We
then reorder color channels to BGR. Some of these steps
are required because we intend to use a pretrained model
(transfer learning) in Level 1 of our architecture. Our

4

RefiNet work closely follows the work of Yan et. al.[28]
with changes mainly to how we learn the label hierarchy,
and architecture of level-2 CNNs.

Figure 5: RefiNet architecture

VGG-16: VGG Networks (first proposed by [22])
have become fairly popular due to their simple and easy to
understand architecture and good performance. For the first
level of classification of our architecture, we use a 16 layer
VGGNet pretrained on ImageNet-1000 dataset. Since our
dataset has 100 or 200 class labels (depending on whether
ImageNet-100 or ImageNet-200), we retrain only the last
two layers for this level and freeze all the previous layers,
as given in Figure 6.

Figure 6: VGG-16 transfer learning
Source: figure adapted from [28]

Constructing class label hierarchy: Our goal of
building a class label hierarchy is to group together class
labels that are often confused with each other into the same
cluster. In a later stage, a dedicated CNN will be trained
to distinguish images among these confused classes. After
training of VGG-16 network in Level 1 is completed, we
sample a subset of the validation set (of N1 images) and get
class prediction scores from VGG-16. Using these scores,
we define a pairwise affinity score for class labels and
cluster the labels based on this score (Ap,q is the affinity
between pair of classes p and q):

Ap,q =
1

N1

(∑
xi:yi=p

scorexi,q +
∑

xi:yi=q

scorexi,p

)
(6)

Intuitively, Equation 6 tries to capture “For a pair of labels
(p, q), how much probability mass is shifted from p to q
and vice-versa”. An alternative we also tried was to use

the confusion matrix directly: given the normalized CxC
confusion matrix F, we defined affinity matrix as:

A =
1

2

(
F + FT

)
(7)

However, we found that first approach works better, most
likely since the confusion matrix is very sparse. We think
that given a large enough validation set from which a
confusion matrix is constructed, both approaches are likely
to work equally well. We tried a few different clustering
algorithms and observed that spectral clustering (followed
by a K-Means in the low dimensional space) performs
best for our usecase. Performance of various clustering
algorithms is given in Table 4.

This procedure, which clusters a given set of class la-
bels, can be repeated in a recursive manner to construct a
deeper hierarchy. We can conceptually think of the results
of this clustering as a mapping P : [1, C] → [1,K]. We
append this class label to cluster mapping aggregation
layer which maps the class predictions of Level-1 VGG-16
network into cluster labels for each input image. This
aggregation mapping layer uses a voting mechanism: the
top 5 predicted class labels each maps to a corresponding
cluster, we count the number of votes each cluster has
among the top 5 predictions and assign the cluster label
with most votes as the predicted cluster label for the
given image. These cluster labels will enable conditional
executions of CNNs at the next level.

Level-2 CNNs: At level-2 we train a set of indepen-
dent CNN models, one for each cluster {Mi}i=K

i=1 . Each
such CNN makes class label predictions and is trained only
on subset of the training data that belongs to class labels
in the given cluster. Hence each level-2 CNN only excels
in classifying a small set of class labels and produces a
prediction over a partial set of categories. The probabilities
of other class labels absent in the partial set are implicitly
set to zero.

Each level-2 CNN shares parameters of the lower lay-
ers of level-1 pretrained VGG-16 network. Alternatively,
we can say that lower layers of VGG-16 are used to
extract features from raw images for level-2 CNNs. More
Specifically, we reuse the first 10 layers of pre-trained
VGG-16 (i.e. up to the output of “conv4” in Figure 6) and
do not backpropagate into these layers when training the
level-2 CNN. The reason for this is that preceding layers
in deep networks response to class-agnostic low-level
features such as corners and edges. Since such features are
useful irrespective of the class labels, sharing these lower
layer parameters avoids extracting these features twice
over. Secondly, it reduces the total number of parameters
and speeds up level-2 training. Each level-2 CNN then

5

trains the later layers from scratch. Since the later layers
are trainined individually for each level-2 CNN, it allows
these CNNs to extract more subtle and nuanced features to
distinguish between class labels that level-1 CNN is more
likely to confuse. If desirable, we can repeat this procedure
to construct a deeper hierarchy by repeating the clustering
process at one of the level-2 CNNs and then have level-3
CNNs for each of the clusters, and so on. Architecture of
level-2 CNNs is outlined in Figure 7.

Figure 7: CNN architecture on Level-2

5.2. Experiments & Results

We evaluate RefiNet architecture on ImageNet-100 and
ImageNet-200, and evaluate its performance compared to
the single-level VGG-16 network. We also perform some
qualitative evaluations on clusters and class-specific perfor-
mance (which classes perform significantly better or worse
in the new approach compared to VGG-16).

5.2.1 Training overview

Our training boradly contains the following steps:
• Train the level-1 VGG network, hyperparameter tun-

ing, evaluation.
• Construct CxC affinity matrix, and cluster labels to

learn label hierarchy
• Train level-2 CNNs, evaluation

To train our networks, we use Adam optimization
algorithm[15]. For hyperparameters related to Adam, the
default values of beta1 and beta2 worked well, whereas we
performed a random search for a good learning rate in the
range [10−2, 10−6]. Learning rates are chosen individually
for level-1 and level-2 CNNs. For hyperparameters related
to network architecture, we use the following values: filter
size: 3x3, dropout: 0.5, maxpool: 2x2. These architec-
tural parameters are maintained across level-1 and level-
2 CNNs. For all steps in the training process, we used
g2.2xlarge GPU instances (preconfigred AMIs shared by
the class instructors) available on Amazon AWS. These in-
stances have 15GB of memory and 4GB of GPU memory.
RefiNets are implemented using Theano[1] and Lasagne.

Our mini-batch size was mainly a function of the amount of
GPU memory and number of model parameters. We used a
mini-batch size of 125.

5.2.2 Label hierarchy

We experimented with various clustering techniques, in-
cluding agglomerative clustering, where each class starts as
a unique cluster and during each iteration the pair of clus-
ters closest to each other are merged; affinity propagation,
where classes are selected based on mutual similarity to be
the ”exemplar” to represent the cluster they belong to; K-
Medoids, a variation of K-Means clustering where medi-
ans instead of means are used in selecting new centers; and
spectral clustering explained in Equation 6. Since the clus-
ter labels will enable conditional executions of CNNs at the
next level, the most important metric to evaluate the quality
of this clustering in our case is the cluster label accuracy
(% of validation examples for which the cluster of the true
label matches the cluster of the predicted label). Results for
various clustering techniques are shown in Table 4, we see
that spectral clustering give the best accuracy of 94.1%.

Clustering algorithm Cluster accuracy
Agglomerative 79.8%
Affinity Propagation 81.0%
K-medoids 85.0%
Spectral clustering 94.1%

Table 4: ImageNet-100: Cluster label accuracy on Level-1

We also explored the relationship between cluster accuracy
and the number of clusters, starting with k = 4. As shown
in Figure 9a, accuracy is highest when k = 5, and decreases
as the number of cluster increases. Figure 9b shows the di-
vision of classes into 5 clusters, and Figure 8 is a qualitative
evaluation of class labels within each cluster for ImageNet-
100. One can see that the learned hierarchy is intuitively
easy to understand - classes within each cluster are indeed
quite related, e.g. cluster#1 contains all insects and sim-
ilar creatures (butterflies, cockroach, tarantula) , cluster#2
contains natural structures (cliff, lakeside, coast) and so on.
Notice that C1 has 41 member classes, we hypothesized
that this relatively big cluster could have had an adverse im-
pact on overall accuracy, and we repeated the cluster-retrain
procedure on this cluster, splitting it further into two more
clusters, as shown in Figure 8. The overall classification
accuracy of RefiNet is discussed in Section 5.3.

5.2.3 RefiNets

Once we have constructed the label hierarchy, we evaluate
RefiNet performance, as part of which we compare the fol-
lowing approaches:

6

Figure 8: Learned clusters are intuitively easy to interpret

(a) Cluster accuracy v/s k (b) Cluster sizes for k=5

Figure 9: Analysis of spectral clustering on ImageNet-100

• VGG-16: This is our baseline model, pretrained VGG-
16 on ImageNet, with retrained last two layers.
• RefiNet-L2: This is our RefiNet model with two levels

of hierarchy - we use the pretrained VGG-16 network
on level-1, use spectral clustering to contruct label hi-
erarchy, and use level-2 CNNs which share parameters
with level-1 as outlined in the previous section.
• RefiNet-L2 with retraining level-1 to output clus-

ter labels directly: This is similar to RefiNet-L2, but
instead of using the label hierarchy in a post-forward
pass step to predict cluster labels from class labels in
Level-1, we retrain the output layer of Level-1 CNN to
directly classify an image into one of the cluster labels.
• RefiNet-L3: This is similar to Refinet-L2, but we go

one level deeper. More specifically, we recursively
cluster level-2 labels belonging to the largest cluster
and train level-3 CNNs

To measure the performance for the entire dataset, we use
two quantitative metrics (to measure class-specific perfor-
mance, we will use a few other metrics discussed later):
top-1 accuracy (% of examples for which the true class
label matches the top predicted label) and top-5 accuracy
(% of examples for which the true class label is in the top-5
predicted label). Training proceeds using Adam optimiza-
tion as discussed in Section 5.2, and an analysis of training
loss as a function of number of epochs is given in Figure 10.

Performance of these approaches on ImageNet-100 is
summarized in Table 5 and ImageNet-200 is summarized
in Table 6. Compared to VGG-16, our best performing
model achieves an improvement of close to 2% in top-1
accuracy for ImageNet-100 and 2.5% in top-1 accuracy
for ImageNet-200 on the validation set. Gains in top-5
accuracy are more modest, and in Section 5.3 we discuss
some possible reasons. As noted in Section 3, we split the
original validation set into 50% validation set (used for
hyperparameter tuning) and 50% test set. Gains on the test
set are quite comparable which might indicate the gains are
generalizable.

Model Val
top-1

Val
top-5

Test
top-1

Test
top-5

VGG-16 70.60 90.04 70.81 91.22
RefiNet-L2 72.50 90.24 72.18 90.34
RefiNet-L2 + retrain 70.41 88.72 69.59 90.81
RefiNet-L3 72.78 90.21 72.89 91.30

Table 5: Model accuracies (in %) on ImageNet-100

Model Val
top-1

Val
top-5

Test
top-1

Test
top-5

VGG-16 60.81 81.24 60.93 80.79
RefiNet-L2 62.92 82.08 62.40 81.96
RefiNet-L2 + retrain 61.74 80.71 60.35 80.25
RefiNet-L3 63.27 82.67 63.38 82.03

Table 6: Model accuracies (in %) on ImageNet-200

(a) Level-1 VGG-16 CNN (b) Level-2 CNN for one of the clusters

Figure 10: Training loss as a function of epochs

5.3. Discussion

In this section, we discuss and analyze results of our
experiments. As shown in the last section, RefiNet-L3
(our best performing model) attained roughly 2% improve-
ment in top-1 accuracy for ImageNet-100 and 2.5% for
ImageNet-200. Moreover, when we further split the largest
cluster obtained in RefiNet-L2 into two new clusters and
repeated the procedure (RefiNet-L3),the top-5 accuracy

7

on ImageNet-100 did not improve at all, whereas for
ImageNet-200 it improved by 0.4%. This might indicate
that RefiNet (and hierarchical classification in general)
performance improvement compared to baseline will be
larger for datasets that are sufficiently large and contain
greater number of classes. As the number of classes in-
crease, it becomes increasingly difficult for a flat classifier
to model it and learn all the subtle features that help it
distinguish closely related pairs of classes. In such a
scenario, hierarchical classification can help.

It is interesting to observe the discrepancy of the changes
in top-1 and top-5 accuracies. On the one hand, the initial
assumption is that the classes within the same cluster
should be preferred over those outside of the cluster, as they
are more similar to the true label; on the other hand, since
most of the classes not in the current cluster is excluded
from the training data during L2 training, only being
able to choose from within the cluster might have been
too restrictive. Table 7 shows the performance of level-2
CNNs on ImageNet-100. This performance is measured
only by considering the subset of the data that belongs to
class labels in the given cluster. We see an improvement
across the board, when comparing performance to level-1
pretrained VGG-16. However, what limits the performance
improvement of the entire architecture is the cluster accu-
racy - if cluster label assignment for an image is incorrect
on level-1, there is no way to “recover” from this mistake
in subsequent level. We discuss a way to potentially extend
RefiNets to overcome this limitation in Section 6. One
additional insight we would like to share is the relationship
between clusters of class labels learned by our approach
and t-SNE embedding visualization of our dataset. We
replaced the class labels of images in the validation set
with the cluster labes and visualized this dataset (with
color of the datapoint indicating cluster label) using t-SNE
embedding, results of which are shown in Figure 11. We
see the clusters separated fairly well in this embedding
which further gives us confidence that the clustering is
meaningful.

Cluster size Val top-1 Val top-5
1 17 81.13 98.62
2 41 70.36 91.55
3 15 85.39 97.61
4 16 79.83 98.02
5 11 82.00 99.27

Table 7: level-2 CNNs accuracy (in %) on ImageNet-100

Figure 11: t-SNE Embedding of ImageNet-100

6. Future Work

6.1. ResFuse Network

We only explored a redundant connection for every two
residual blocks. We can introduce an additional redundant
connection for three blocks as well, and until we get a fully
connected redundant network. Exploring the trade-off be-
tween time per epoch and accuracy increase through redun-
dant connection increase could be another possible focus
of study. We also would like to compare ResFuse with
ResNet that utilizes convolution-projection based dimen-
sion increase, to see if two networks perform similarly or
if ResFuse still maintains similar margins over ResNet.

6.2. RefiNet

Our RefiNet-L3 model was the best performing and
attained roughly 2% improvement in top-1 accuracy for
ImageNet-100 and 2.5% for ImageNet-200. The final
classification accuracy of RefiNet is highly dependent on
the clustering accuracy, which is significantly lower than
100%. In stead of assigning each class to strictly one
cluster, we use a softer clustering technique, allowing it to
pick from multiple clusters, weighting the final class scores
by initial predictions.

Since RefiNet typically works better with datasets that
has more classes, we propose to recursively run RefiNet
on the full ImageNet dataset with 1000 classes. At each
iteration the algorithm would split the largest cluster into
two clusters and perform classification on these two new
clusters. The algorithm stops when all individual cluster
has size smaller than some threshold.

8

References
[1] J. Bergstra, O. Breuleux, and et. al. Theano: A cpu and gpu

math expression compiler. Python for Scientific Computing
Conference, 2010.

[2] J. Dai, K. He, and J. Sun. Instance-aware semantic segmenta-
tion via multi-task network cascades. arXiv technical report
arXiv:1512.04412, 2015.

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. in CVPR, pages 886–893, 2005.

[4] J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio,
Y. Li, H. Neven, and H. Adam. Large-scale object classifica-
tion using label relation graphs. ECCV, 2014.

[5] J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei. Hedging
your bets: Optimizing accuracy-specificity trade-offs in large
scale visual recognition. CVPR, 2012.

[6] R. Fergus, H. Bernal, Y. Weiss, and A. Torralba. Seman-
tic label sharing for learning with many categories. ECCV,
2010.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. CVPR, 2014.

[8] I. Goodfellow, D. Warde-Farley, M. Mirza, and A. Courville.
Maxout networks. ICML, 2013.

[9] L. K. Hansen and P. Salamon. Neural network ensembles.
IEEE Transactions on Pattern Analysis & Machine Intelli-
gence, (10):993–1001, 1990.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pool-
ing in deep convolutional networks for visual recognition.
ECCV, 2014.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. in ArXiv technical report
arXiv:1512.03385, 2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. ICCV, 2015.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 1026–1034, 2015.

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
JLMR, 2015.

[15] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. ICLR, 2015.

[16] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet clas-
sification with deep convolutional neural networks. in NIPS,
2012.

[17] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural compu-
tation, 1989.

[18] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR,
2013.

[19] B. Liu, F. Sadeghi, M. Tappen, O. Shamir, and C. Liu. Prob-
abilistic label trees for efficient large scale image classifica-
tion. CVPR, 2013.

[20] D. Lowe. Distinctive image features from scale-invariant
keypoints. in IJCV, 2004.

[21] Y. Nesterov et al. Gradient methods for minimizing compos-
ite objective function. Technical report, UCL, 2007.

[22] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. ICLR, 2015.

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. JLMR, 2014.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[25] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway
networks. arXiv preprint arXiv:1505.00387, 2015.

[26] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training
very deep networks. In Advances in Neural Information Pro-
cessing Systems, 2015.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In ICPR, 2015.

[28] Z. Yan, H. Zhang, R. Piramuthu, and V. Jagadeesh. Hd-
cnn: Hierarchical deep convolutional neural network for
large scale visual recognition. ICCV, 2015.

[29] M. D. Zeiler and R. Fergus. Stochastic pooling for regular-
ization of deep convolutional neural networks. ICLR, 2013.

[30] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional neural networks. ECCV, 2014.

[31] A. Zweig and D. Weinshall. Exploiting object hierarchy:
Combining models from different category levels. ICCV,
2007.

9

